

Pratap Bose

HYDRAULIC ANALYSIS USING PIPENET SOFTWARE

- APPLICATION AND ADVANTAGES

Who use PIPENET?

Across the
globe for over
40 yearsby companies
large and
small including
many
multinationals

which standardise on PIPENET and specify that it must be used by subcontractors

Why use PIPENET?

- > PIPENET sets the standard- leads the way in automation of flow analysis
- PIPENET starts at the design phase
- > PIPENET performs pipe sizing and pump / compressor selection calculations
- PIPENET carries out dynamic analysis to computing hydraulic loads for pipe stress analysis and support design
- > PIPENET can be used in hydraulic analysis of
 - ✓ FF, CW, SW, PW, Make-up Water, Clarified Water
 - ✓ Service Air, Any Gas distribution network
 - ✓ PWDS, DFDS, CFDS
 - ✓ Steam Piping, Feed Water, Ventilation System
 - ✓ Loading Unloading System, Subsea and Cross-country pipeline

Pratap Bose

HYDRAULIC ANALYSIS USING PIPENET SOFTWARE

-CAPABILITIES AND FEW CREDENTIALS

S U N R I S E

SUNRISE SYSTEMS LIMITED

Flint Bridge Business Centre Ely Road Waterbeach Cambridge CB5 9QZ United Kingdom

Tel.: +44 1223 441311 Fax: +44 1223 441297

E-mail: pipenet@sunrise-sys.com

Web: www.sunrise-sys.com

SUNRISE SYSTEMS PIPENET VISION

Hydraulic Analysis of Fire Water Network

Project : 2 x 500 MW Neyveli New Thermal Power Project (NNTPP) Flue Gas Desulphurization (FGD) System Package (NTA4) Owner: NLC INDIA LIMITED (NLCIL) FGD CONTRACT REF. NO: 053707 / CO. CONTS / 0016K / NNTPP / NTA4 - FGD / e-conts / 2020, Dt.30.03.2022 EPC Contractor LARSEN & TOUBRO LIMITED EPC Contractor's Engineer Technology (QFGDM) Larsen and Toubro Limited CHIYODA CORPORATION Energy Products and Systems Engineering (EPSE) Owners Consultant: Tractebel Engineering Pvt. Ltd. (India) TRACTEBEL Vendor : **B & B UNICON** B&B FGD Document Title: Layout of MVW Spray System along with pressure drop calculation for Cable Galleries VENDOR Doc No: - BBU-LT-NNTPP-FFS-004 REV.: 01 TRACTEBEL ENGINEERING PVT. LTD. RACTEBEL REV.: 01 L&T Doc No EO22001-00-HT-M-GA-909 APPROVAL STATUS: REV.: 01 NLCIL Doc No: NTA4-00-HT-M-GA-909 Space for Stamping APPROVED AS NOTED RECEIVED FOR INFORMATION/REFEREN

Rev No	Date	Reason of Revision	Prepared by	Reviewed by	Approved by
00	25-07-2023	ISSUED FOR APPROVAL	SB	SB	PB
01	19-09-2023	RE-SUBMISSION FOR APPROVAL	SB	SB	PB

SUNRISE SYSTEMS LIMITED

Flint Bridge Business Centre Ely Road Waterbeach Cambridge **CB5 9QZ** United Kingdom

Tel.: +44 1223 441311 Fax: +44 1223 441297

Hydraulic **Analysis of Fire** Water Network

PIPENET™ - Leading the Way in Fluid Flow Analysis

SUNRISE SYSTEMS

PIPENET VISION

E-mail: pipenet@sunrise-sys.com

Web: www.sunrise-sys.com

Project Objective

Application

Usage

Advantage

Salient

Features

- 2 x 500 MW NNTPP FGD Plant A/C LnT, Energy-Power Division
- Checking suitability of input pressure available at tapping point of FW network
- Pipe Sizing
- Actual availability of Pressure at MVW Spray Nozzles against design limits

- MVW Spray System in FGD Plant Cable Cellar Room
- Same analysis can be done for any type of pressurised water distribution application
- Optimum design of Water Pump and Pipe sizing

- Fluid- Water, Temp- 20 Deg C
- Pipe type- GI ERW as per IS:1239 Medium Gr.
- Max Velocity- 10 M/Sec
- No. of Pipe Segments- 439. Input Node- 1, Output Nodes-201
- No. of Iterations 2

PIPENET[®] Spray Module Report Project: PROJECT : NNTPP (2x500 MW) - FGD PACKAGE

SUNRISE

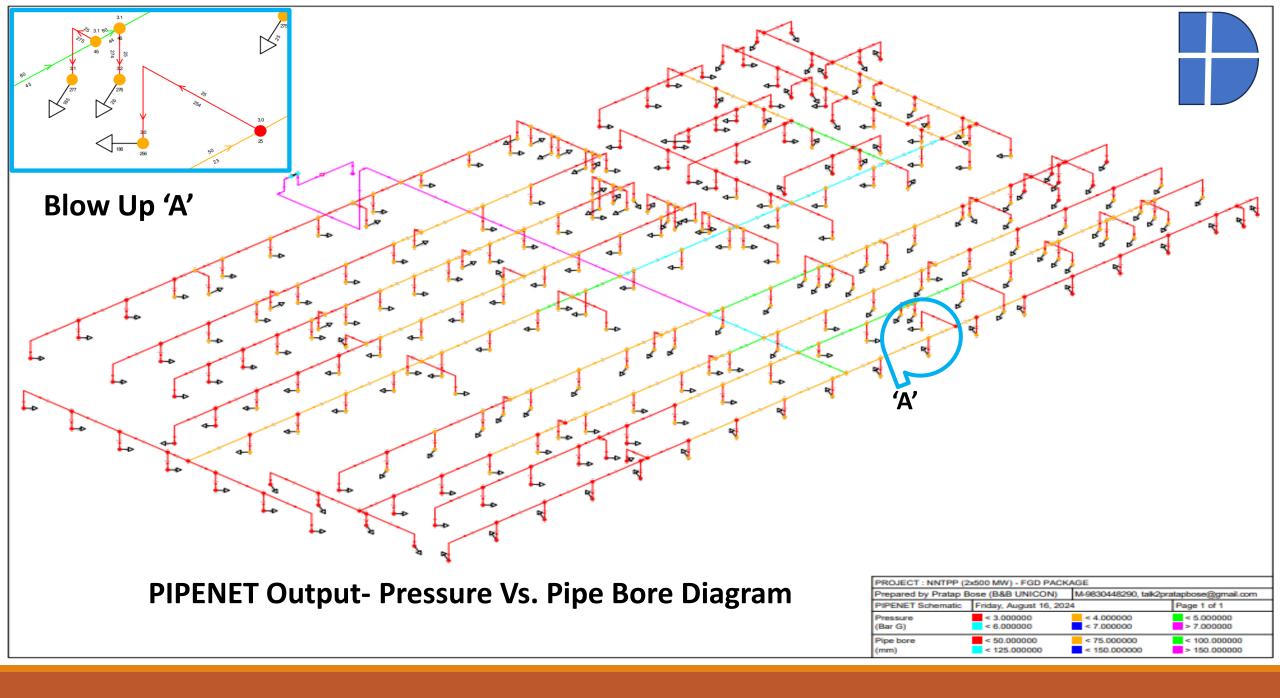
SUNRISE SYSTEMS LIMITED

Flint Bridge **Business Centre** Ely Road Waterbeach Cambridge **CB5 9QZ** United Kingdom

Tel.: +44 1223 441311 Fax: +44 1223 441297

E-mail: pipenet@sunrise-sys.com

Web: www.sunrise-sys.com


SUNRISE SYSTEMS PIPENET VISION

PIPENET Output – Sample Page

Flow in	pipes								
Label	Input node	Output	Bore	Inlet pressure	Outlet	Static head loss	Friction	Flow	Velocity
			(mm)	(Bar G)	(Bar G)	(Bar)	(Bar)	(l/min)	(m/sec)
1	1	2	150.0	7.346347	5.85032	0.068525 317	1.427502	7850.995 8	6.997642 5
2	3	4	150.0	5.021195	3.519305	0.274101	1.227788	7850.995	6.997642 5
3	4	5	150.0	3.519305	3.3903	0	0.129005	7434.357	6.626289 8
4	5	6	150.0	3.3903	3.31613	0	0.07417	6854.319 6	6.109298 7
5	6	7	150.0	3.31613	3.250765	0	0.065365	6216.057	5.540411
6	7	8	150.0	3.250765	3.20193	0	0.048835	5612.712 8	5.002646 4
7	8	9	150.0	3.20193	3.17105	0	0.03088	3137.383 46	2.796369 8
8	9	10	100.0	3.17105	3.1058	0	0.06525	2221.716 2	4.350567 8
9	10	11	100.0	3.1058	3.08847	0	0.01733	1470.596 3	2.879723 8
10	11	12	80.00	3.08847	3.05918	0	0.02929	651.5896 5	2.160493
11	12	13	65.00	3.05918	3.032575	0	0.026605	310.8456 17	1.422359
12	13	14	65.00	3.032575	3.022065	0	0.01051	279.1755 74	1.277444
13	14	15	50.00	3.022065	2.99219	0	0.029875	247.5590 91	1.905983 3
14	15	16	50.00	2.99219	2.968955	0	0.023235	216.0953 68	1.663740 9
15	16	17	40.00	2.968955	2.92177	0	0.047185	184.7509 48	2.276403
16	17	18	40.00	2.92177	2.916475	0	0.005295	153.6713 4	1.893457 3
17	18	19	40.00	2.916475	2.89089	0	0.025585	122.5981 16	1.510589
18	19	20	32.00	2.89089	2.859365	0	0.031525	91.65798 3	1.534720
19	20	21	25.00	2.859365	2.801475	0	0.05789	60.88258 26	1.785448
20	21	22	25.00	2.801475	2.854605	-0.078314 653	0.025184 653	30.41203 48	0.891866
21	12	23	65.00	3.05918	3.0215	0	0.03768	340.7440 33	1.559167
22	23	24	65.00	3.0215	3.00881	0	0.01269	309.1304 29	1.414511
23	24	25	50.00	3.00881	2.987415	0	0.021395	277.5816 16	2.13713
24	25	26	50.00	2.987415	2.974975	0	0.01244	246.2338 84	1.895780 4
25	26	27	50.00	2.974975	2.95199	0	0.022985	214.8585 07	1.654218
26	27	28	40.00	2.95199	2.89798	0	0.05401	183.6015	2.262241
27	28	29	40.00	2.89798	2.85961	0	0.03837	152.6244	1.880557

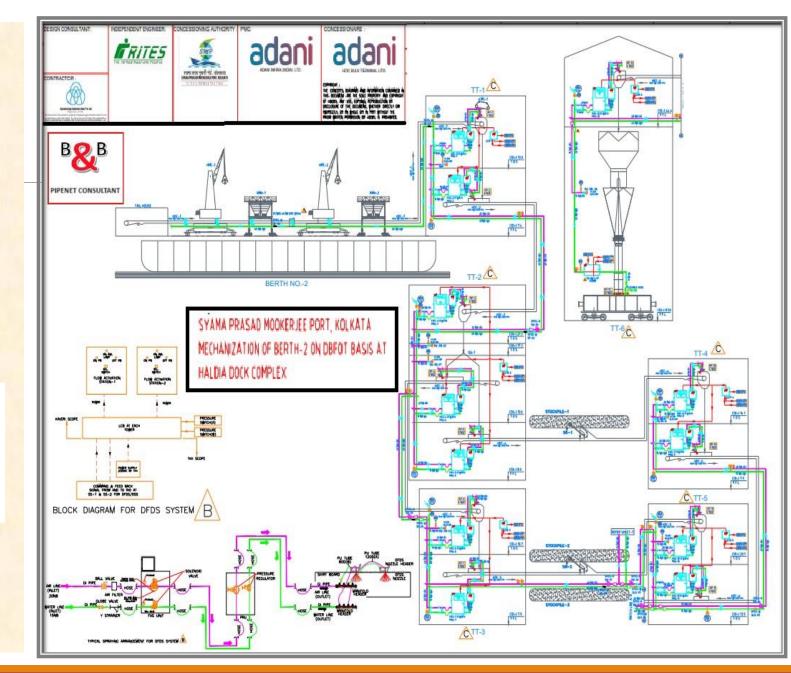
PIPENET® - Leading the Way in Fluid Flow Analysis

20-Aug-2024 Page 66 of 86

SUNRISE SYSTEMS LIMITED

Flint Bridge **Business Centre** Ely Road Waterbeach Cambridge **CB5 9QZ** United Kingdom

Tel. +44 1223 441311 Fax: +44 1223 441297


E-mail: pipenet@sunrise-sys.com

Web: www.sunrise-sys.com

SUNRISE SYSTEMS PIPENET VISION

Hydraulic Analysis of Service Water Distribution Network

SUNRISE SYSTEMS LIMITED

Flint Bridge Business Centre Ely Road Waterbeach Cambridge CB5 9QZ United Kingdom

Tel.: +44 1223 441311 +44 1223 441297

E-mail: pipenet@sunrise-sys.com

www.sunrise-sys.com

Hydraulic Analysis of Service Water

SUNRISE SYSTEMS PIPENET VISION

Distribution Network

Project Objective

Application Usage

Advantage

Salient

Features

- Shyamaprasad Mukherjee Port, Kolkata, Berth-2 A/C. ADANI
- Capacity Selection of DS Water Pump
- Pipe Sizing
- Actual availability of Pressure at Output Points against desired Water Flow

- Dry Fog Dust Suppression System in Coal Handling Plant
- Same analysis can be done for any type of pressurised water distribution application
- Optimum design of Water Pump and Pipe sizing

- Fluid- Water, Temp- 20 Deg C
- Pipe type- GI ERW as per IS:1239 Heavy Gr.
- Max Velocity- 2 M/Sec up to 65 NB; 2.5 M/Sec for 80 NB and above.
- No. of Pipe Segments- 54, Input Node- 1, Output Nodes-18
- No. of Iterations 3

SUNRISE SYSTEMS LIMITED

Flint Bridge **Business Centre** Ely Road Waterbeach Cambridge CB5 9QZ United Kingdom

Tel.: +44 1223 441311 Fax: +44 1223 441297

E-mail: pipenet@sunrise-sys.com

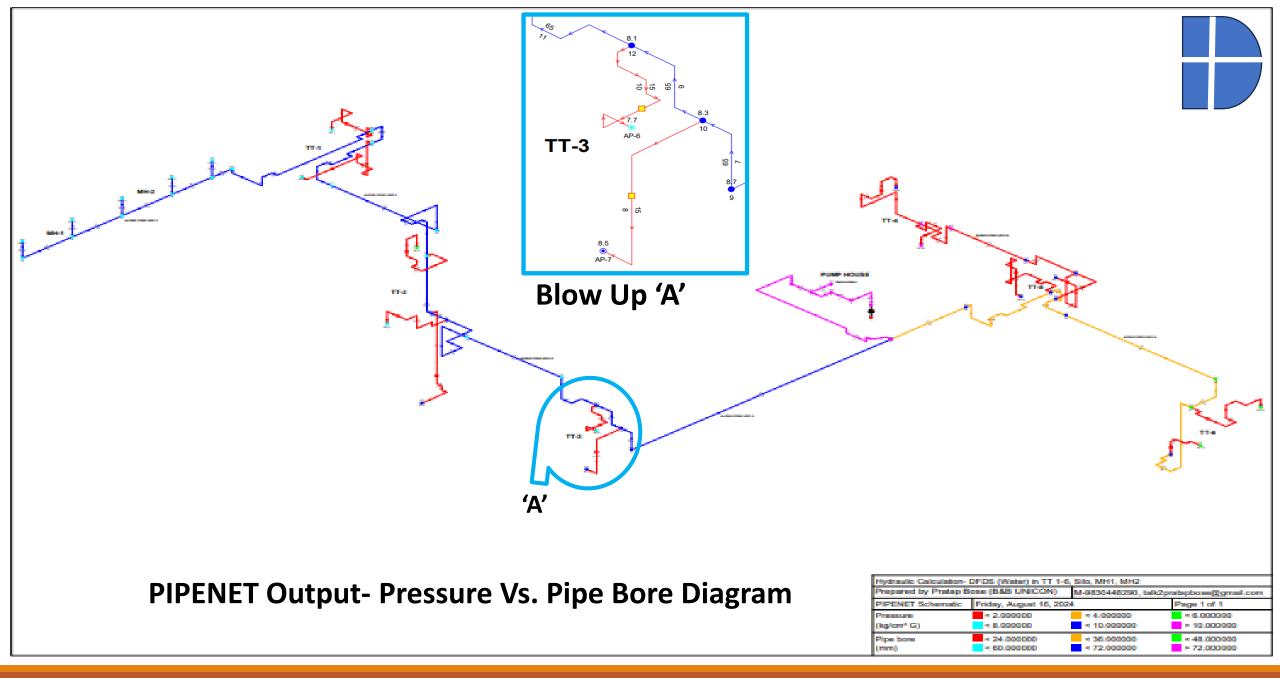
Web: www.sunrise-sys.com

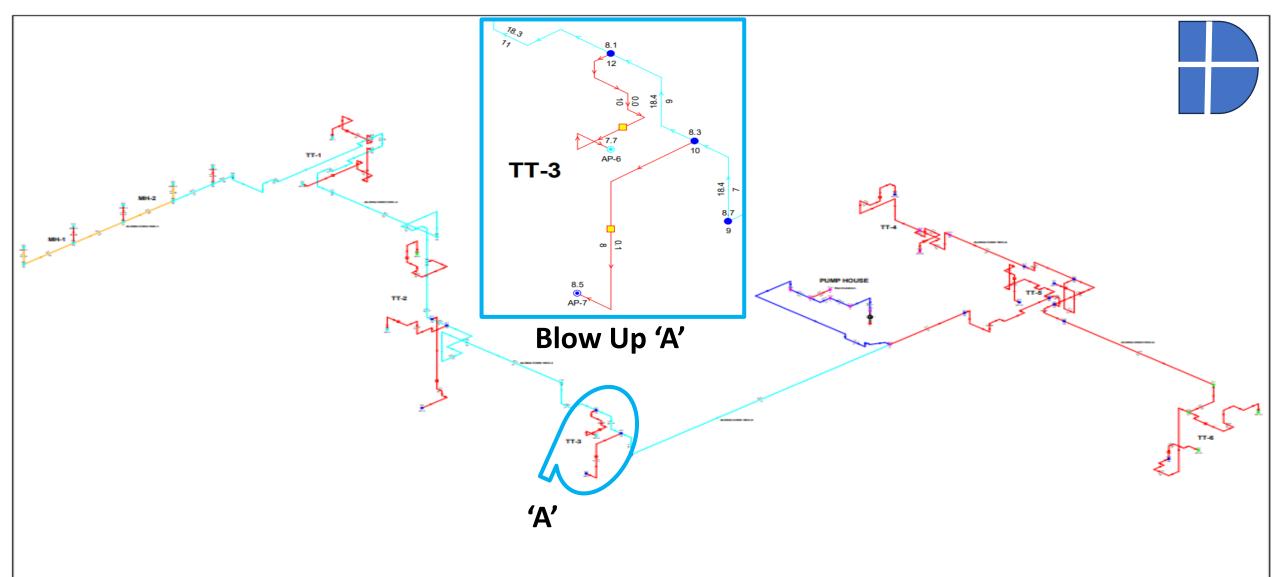
SUNRISE SYSTEMS PIPENET VISION

PIPENET Output – Sample Page

PIPENET® Standard Module Report

Project: Hydraulic Calculation- DFDS (Water) in TT 1-6, Silo, MH1, MH




Calculated Results

Flow in	n pipes										
Label	Input node	Output node	Inlet pressur e	Outlet pressur e	Friction	Velocity	Flow	Density	Static head loss	Friction factor	Design- group
			(kg/cm ² G)	(kg/cm ² G)	friction units	(m/sec)	(m %h)	(kg/m*)	(kg/cm²)		
1	2	з	11.4996 915	11.4128 107	0.00244 668159	1.38097 76	24.0000 006	998.203 31	0.06987 42313	4.94067 417E-0 3	Unset
2	3	4	11.4128 107	11.3944 813	0.00244 668159	1.38097 76	24.0000 006	998.203 31	0	4.94067 417E-0 3	Unset
4	4	5	11.3944 813	11.3768 861	0.00244 668159	1.38097 76	24.0000 006	998.203 31	0	4.94067 417E-0 3	Unset
5	7	8	11.3191 355	11.0485 548	0.00192 503301	1.21526 04	21.1200 021	998.203 31	0.07985 62669	5.01976 302E-0 3	Unset
6	8	9	11.0485 548	8.69857 699	0.00344 17015	1.48304 02	18.4319 995	998.203 31	0.34937 1141	5.09627 303E-0 3	Unset
7	9	10	8.69857 699	8.25738 779	0.00344 17015	1.48304 02	18.4319 995	998.203 31	0.41924 5369	5.09627 303E-0 3	Unset
8	10	AP-7/0	8.25738 779	8.52541 327	0.00018 323025 7	0.11946 324	0.07199 99917	998.203 31	-0.7711 12031	9.20834 485E-0 3	Unset
9	10	12	8.25738 779	8.11541 148	0.00341 644761	1.47724 71	18.3599 99	998.203 31	0.10630 8658	5.09861 764E-0 3	Unset
10	12	AP-6/0	8.11541 148	7.68194 735	0.00012 212694 4	0.07964 21692	0.04800 00031	998.203 31	-0.0683 769259	1.38125 150E-0 2	Unset
11	12	14	8.11541 148	7.82344 756	0.00339 96382	1.47338 51	18.3119 992	998.203 31	0.26302 6579	5.10018 971E-0 3	Unset
12	14	15	7.82344 756	7.78160 993	0.00339 96382	1.47338 51	18.3119 992	998.203 31	-0.2625 27469	5.10018 971E-0 3	Unset
13	15	16	7.78160 993	8.09840 771	0.00339 96382	1.47338 51	18.3119 992	998.203 31	-0.3892 99292	5.10018 971E-0 3	Unset
14	16	AP-4/0	8.09840 771	7.49224 312	0.00018 323025 7	0.11946 324	0.07199 99917	998.203 31	0.10331 4037	9.20834 485E-0 3	Unset
15	16	18	8.09840 771	8.09621 41	0.00337 45437	1.46759 19	18.2399 986	998.203 31	0	5.10255 899E-0 3	Unset
16	18	AP-5/0	8.09621 41	8.22427 638	0.00018 323025 7	0.11946 324	0.07199 99917	998.203 31	-0.6313 63585	9.20834 485E-0 3	Unset
17	18	20	8.09621 41	6.59677 994	0.00334 952874	1.46179 88	18.1679 998	998.203 31	1.44739 478	5.10494 411E-0 3	Unset
18	20	AP-3/0	6.59677 994	5.98506 819	0.00012 212694 4	0.07964 21692	0.04800 00031	998.203 31	0.10980 2369	1.38125 150E-0 2	Unset

PIPENET® - Leading the Way in Fluid Flow Analysis

20-Aug-2024 Page 11 of 16

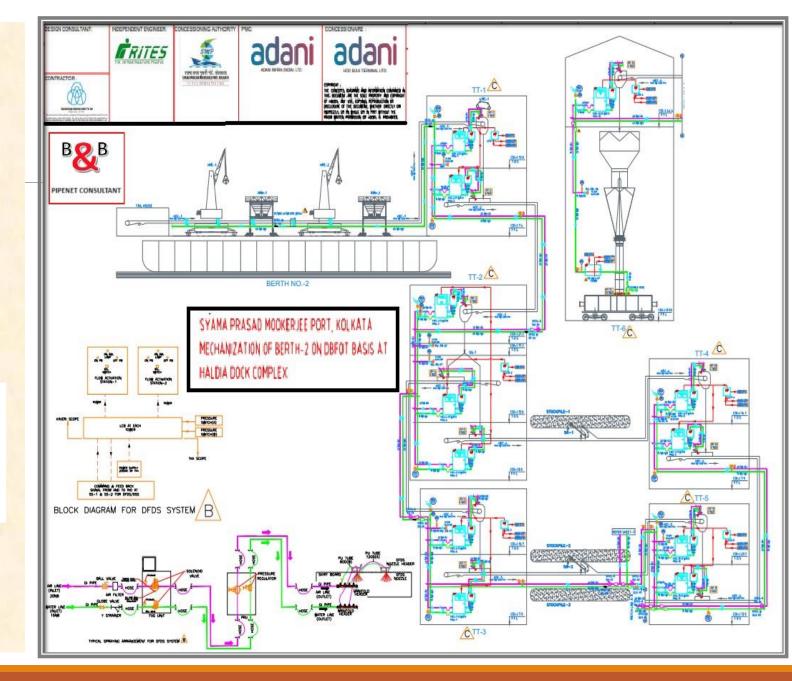
PIPENET Output - Pressure Vs. Pipe Flow Diagram

Hydraulic Calculation- DFDS (Water) in TT 1-6, Silo, MH1, MH2									
Prepared by Pratap I	Bose (B&B UNICON)	M-9830448290, talk2pratapbose@gmail.com							
PIPENET Schematic	Friday, August 16, 2024	4	Page 1 of 1						
Pressure (kg/cm ² G)	< 2.000000 < 8.000000	< 4.000000 < 10.000000	< 6.000000 > 10.000000						
Pipe vol. flow (m³/h)	< 5.000000 < 20.000000	< 10.000000 < 25.000000	< 15.000000 > 25.000000						

SUNRISE SYSTEMS LIMITED

Flint Bridge **Business Centre** Ely Road Waterbeach Cambridge **CB5 9QZ** United Kingdom

Tel. +44 1223 441311 Fax: +44 1223 441297


E-mail: pipenet@sunrise-sys.com

Web: www.sunrise-sys.com

SUNRISE SYSTEMS PIPENET VISION

Hydraulic Analysis of Service Air Distribution Network

SUNRISE SYSTEMS

PIPENET VISION

SUNRISE SYSTEMS

LIMITED

Flint Bridge **Business Centre** Ely Road Waterbeach Cambridge **CB5 9QZ** United Kingdom

Tel.: +44 1223 441311 Fax: +44 1223 441297

E-mail: pipenet@sunrise-sys.com

Web: www.sunrise-sys.com

Hydraulic Analysis of Service Air Distribution Network

Project Objective

Application Usage

Advantage

Salient

Features

• Shyamaprasad Mukherjee Port, Kolkata, Berth-2 A/C. ADANI

Capacity Selection of Air Compressor

• Pipe Sizing

• Actual availability of Pressure at Output Points against desired Air Flow

 Dry Fog Dust Suppression System in Coal Handling Plant • This kind of analysis can be done for any type of service air application Optimum design of Air Compressor and Pipe sizing

• Fluid- Air, Temp- 30 Deg C

- Pipe type- GI ERW as per IS:1239 Heavy Gr.
- Max Velocity- 12 M/Sec
- No. of Pipe Segments- 66, Input Node- 1, Output Nodes-12
- No. of Iterations 6

LIMITED

Flint Bridge

Tel.:

Fax:

+44 1223 441311

+44 1223 441297

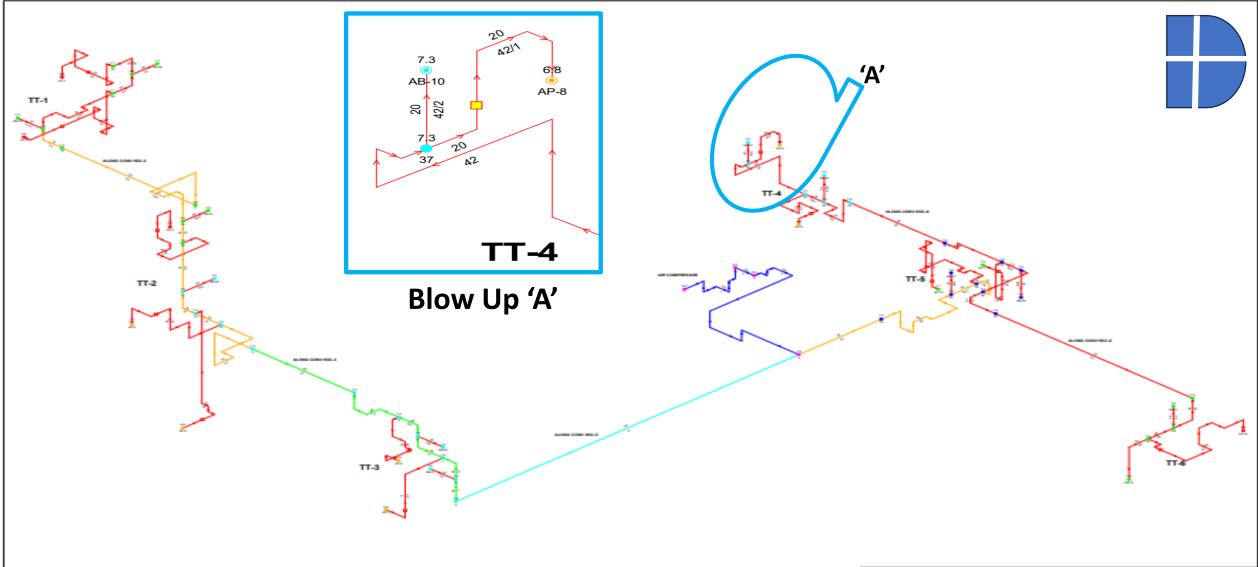
Business Centre Ely Road Waterbeach Cambridge CB5 9QZ United Kingdom **PIPENET[™]** - Leading the Way in Fluid Flow Analysis

PIPENET[®] Standard Module Report

Project: Hydraulic Calculation- DFDS (Air) for TT 1-6,

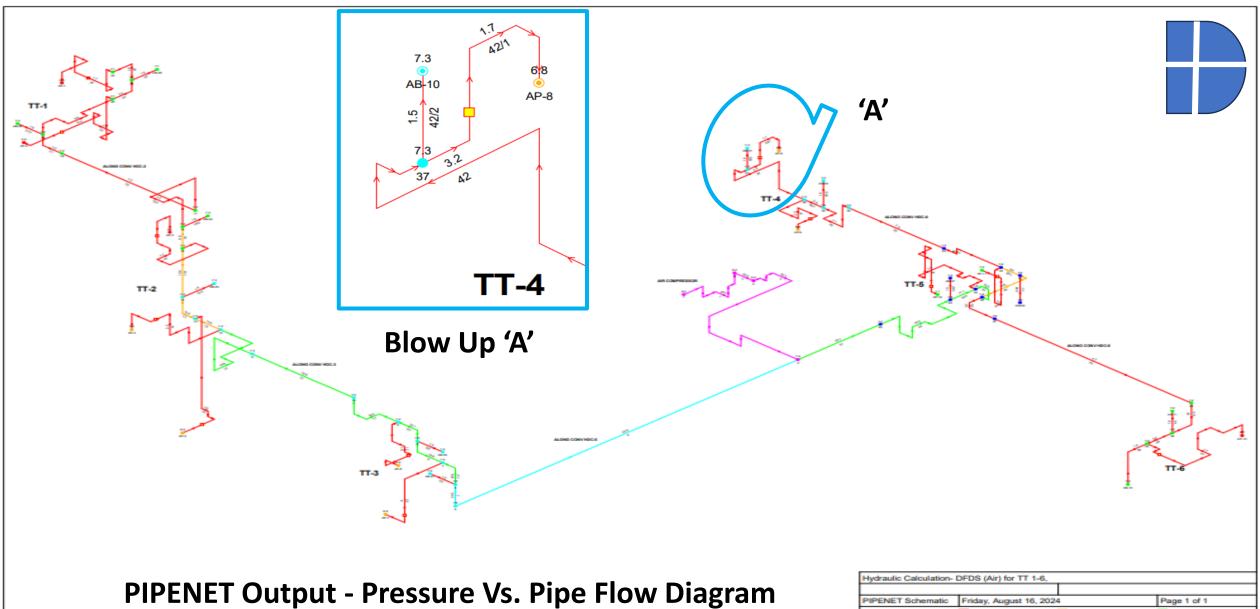
Flow in	n pipes										
Label	Input node	Output node	Inlet pressur e	Outlet pressur e	Friction	Velocity	Flow	Density	Static head loss	Friction factor	Design- group
			(Bar G)	(Bar G)	friction units	(m/sec)	(ft%min)	(kg/m*)	(Bar)		
1	1	2	8	7.98818 19	0.00058 304688	5.46731 23	39.9942 59	10.3527 7	0.00121 90288	6.24564 197E-0 3	Unset
2	2	з	7.98818 19	7.98535 44	0.00053 195312	5.47176 17	40.0268 076	10.3443 51	0	5.69383 288E-0 3	Unset
з	3	4	7.98535 44	7.94803 44	0.00053 3125	5.48399 59	40.1163 037	10.3212 74	0.00081 138359	5.69383 148E-0 3	Unset
6	4	5	7.94803 44	7.48784 44	0.00076 3125	5.34987 5	22.8852 8	10.0352 62	0.00353 45432	6.73552 090E-0 3	Unset
7	5	6	7.48784 44	7.48328 88	0.00247 48438	8.87427 9	23.5112 443	9.76808 26	0.00095 814453	6.41823 327E-0 3	Unset
8	7	AP-7/0	7.46138 62	6.94841 12	0.00107 3125	3.74640 08	2.51885 458	9.44547 84	-0.0073 822589	8.13522 469E-0 3	Unset
9	7	8	7.46138 62	7.45049 31	0.00172 80469	7.40688 13	19.6235 66	9.73401 74	0.00095 516243	6.45569 293E-0 3	Unset
10	9	AP-6/0	7.44460 5	6.93557 94	0.00048 882812	2.49327 21	1.67632 605	9.42845 25	-0.0006 530526 7	8.38168 152E-0 3	Unset
11	9	10	7.44460 5	7.43306 62	0.00122 91406	6.23293 5	16.5133 482	9.71435 07	0.00251 16379	6.49737 939E-0 3	Unset
12	10	11	7.43306 62	7.32845 88	0.00123 76562	6.27607 73	16.6276 483	9.64757 35	-0.0025 041948	6.49737 054E-0 3	Unset
13	11	12	7.32845 88	7.27733 12	0.00287 44531	8.72420 12	16.7834 118	9.55803 68	-0.0036 677164	6.71715 615E-0 3	Unset
14	12	AP-4/0	7.27733 12	6.76267 88	0.00104 875	3.74321 75	2.51671 424	9.23287 68	0.00096 712059	8.14722 851E-0 3	Unset
15	12	13	7.27733 12	7.27595 38	0.00211 9375	7.48412 7	14.3977 86	9.52785 11	0	6.75124 675E-0 3	Unset
16	13	AP-5/0	7.27595 38	6.76573 12	0.00104 94531	3.74429 66	2.51743 968	9.23384	-0.0059 11651	8.14702 548E-0 3	Unset
17	13	14	7.27595 38	7.27269 31	0.00147 25781	6.21765 47	11.9613 768	9.52518 46	0.00093 42627	6.79842 476E-0 3	Unset
18	15	AP-3/0	7.24505 5	6.73649 75	0.00047 71875	2.49135 8	1.67503 917	9.19926 93	0.00102 38524	8.39967 560E-0 3	Unset
19	15	16	7.24505 5	7.24332 31	0.00080 140625	4.56189 92	8.77607 351	9.49053 57	0.00093 078011	6.89769 210E-0 3	Unset
20	17	18	7.23029 69	7.18304 12	0.00054 445312	3.74741 1	7.20918 016	9.44739 44	-0.0112 50616	6.97694 346E-0 3	Unset

PIPENET® - Leading the Way in Fluid Flow Analysis


SUNRISE SYSTEMS PIPENET VISION

PIPENET Output – Sample Page

E-mail: pipenet@sunrise-sys.com


Web: www.sunrise-sys.com

20-Aug-2024 Page 13 of 18

PIPENET Output- Pressure Vs. Pipe Bore Diagram

Prepared by Pratap B	ose (B&B UNICON)	M-9830448290, talk2pratapbose@gmail.con				
PIPENET Schematic	Friday, August 16, 202	4	Page 1 of 1			
Pressure (Bar G)	< 6.750000 < 7.500000	< 7.000000 < 7.750000	< 7.250000 > 7.750000			
Pipe bore (mm)	< 30.000000	< 40.000000	< 50.000000			

PIPENET Schematic	Friday, August 16,	2024	Page 1 of 1
Pressure (Bar G)	< 6.750000 < 7.500000	< 7.000000 < 7.750000	< 7.250000 > 7.750000
Pipe vol. flow	< 7.500000	< 15.000000	< 22.500000
(ft ^a /min)	< 30.000000	< 37.500000	> 37.500000

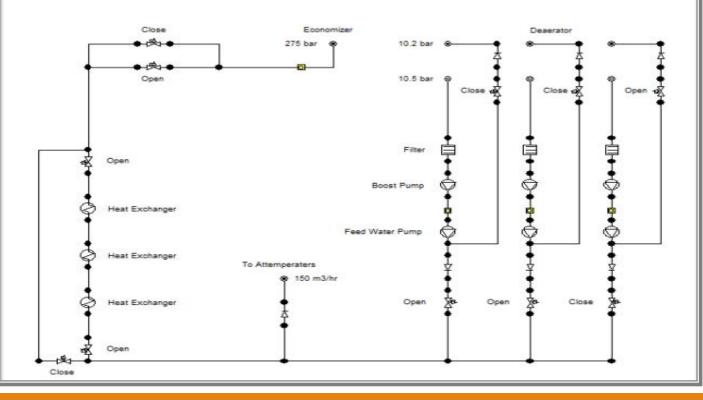
SUNRISE SYSTEMS LIMITED

Flint Bridge **Business Centre** Ely Road Waterbeach Cambridge **CB5 9QZ** United Kingdom

Tel.: +44 1223 441311 Fax: +44 1223 441297

E-mail: pipenet@sunrise-sys.com

Web: www.sunrise-sys.com


SUNRISE SYSTEMS PIPENET VISION

Hydraulic Analysis of Feed Water System Network

The Network

In this system, water is pumped from the bottom of the water storage section of the deaerator. While some of the water is distributed to the attemperators, the remaining water passes through three high-pressure heat exchangers, and arrives at the economizer. There are three 50% capacity parallel-pump sets. Normally, two of them are in operation, and one is on standby. Each pump set comprises of a boost pump and a feed water pump, and has a bypass line for returning to the top of the trayed section of the deaerator, to maintain a minimum flow rate. There is also a bypass line for the heat exchangers. Four orifice plates are used to measure the flow rate. Some system parameters for this example are listed below.

Unit type: 600MW supercritical, System: Feed water system; 10.5 Bar A (bottom of the water storage section of the deaerator), Pressure: 10.2 Bar A (top of the traved section of the deaerator). 275 Bar A (economizer side): Temperature: 180 °C (before heat exchangers).

SUNRISE SYSTEMS

PIPENET VISION

SUNRISE SYSTEMS

Waterbeach Cambridge **CB5 9QZ** United Kingdom

Tel.: +44 1223 441311 Fax: +44 1223 441297

E-mail: pipenet@sunrise-sys.com

Web: www.sunrise-sys.com

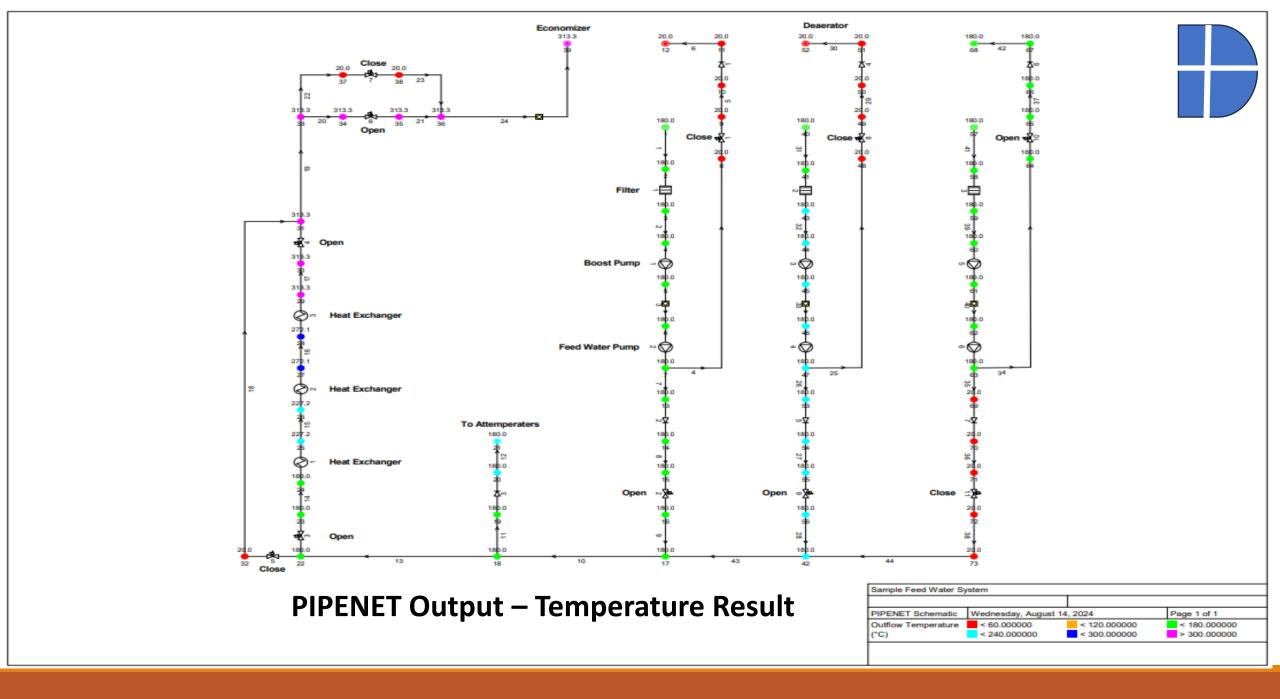
Hydraulic **Analysis of Feed** Water System Network

Project Objective

Application

Usage

Advantage


Salient

Features

- 600 MW Supercritical Unit A sample case study
- Temperature Output at all Nodes
- Pressure Output at all Nodes

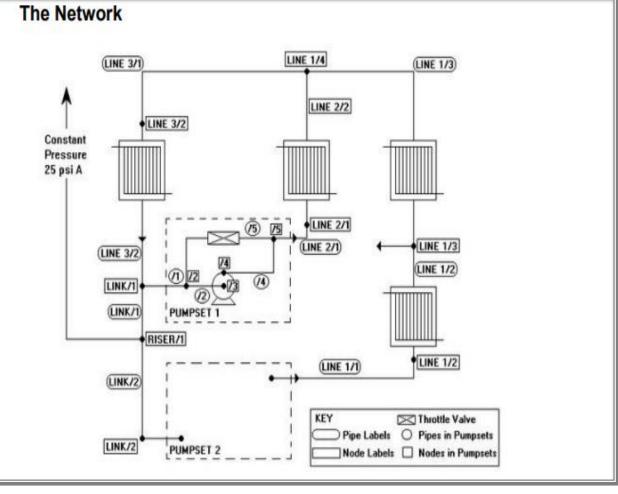
- Feed Water System in Thermal Power Plant
- This kind of analysis can be done for any type of steam pipe application
- This analysis can be used for Optimum design of Pumps, Heat Exchanger, Pipe sizing, Orifice Plates etc.

- Fluid- Water, Variable Temperature Option
- Temperature 180 Deg C before Heat Exchanger; Ambient- 20 Deg C
- No. of Pumps 6, Heat Exchanger 3
- No. of Iterations 5

SUNRISE SYSTEMS

Flint Bridge Business Centre Ely Road Waterbeach Cambridge CB5 9QZ United Kingdom

Tel.: +44 1223 441311 Fax: +44 1223 441297


E-mail: pipenet@sunrise-sys.com

Web: www.sunrise-sys.com

PIPENET™ - Leading the Way in Fluid Flow Analysis

SUNRISE SYSTEMS PIPENET VISION

Hydraulic Analysis of Closed-Loop Cooling Water System

In this case study of a sample closed-loop colling water system the network is a closed loop with a single opening to the atmosphere, where a riser to an expansion tank connects to the loop. The pressure at that point is 25 psi A. The network consists of four heat exchangers, two pumps and a piping network with varying fluid temperature. Here the fluid, the coolant, is a glycol-water mixture at 2 Deg C. Default system temperature is 2 Deg C. However, temperature varies in different pipe segments.

Pipenet is run to analyse the network for Pressure Vs. Pipe mass flow with variable fluid temperature in the network.

SUNRISE SUNRISE SYSTEMS

Waterbeach Cambridge **CB5 9QZ** United Kingdom

Tel.: +44 1223 441311 Fax: +44 1223 441297

E-mail: pipenet@sunrise-sys.com

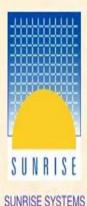
Web: www.sunrise-sys.com **Hydraulic Analysis** of Closed-Loop **Cooling Water** System

SUNRISE SYSTEMS

PIPENET VISION

Project Objective

Application Usage


Advantage

Salient **Features**

- Closed-Loop Cooling Water System A sample case study
- To determine Pressure Output at all Nodes vis-à-vis pipe mass flow with variable fluid temperature in the network.

- Closed-Loop Cooling Water System in any kind of plant
- This kind of analysis can be done for any type of coolant application
- This analysis can be used for Optimum design of Pumps, Heat Exchanger, Pipe sizing etc.

- Fluid- Glycol-water mixture at 2 Deg C with Variable Temperature Option
- Temperature System Default 2 Deg C. Temperature in Pipe LINE1/2 is 20°C, and the temperature in Pipes LINE1/3, LINE2/2 and LINE3/1 is 40°C.
- No. of Iterations 7

LIMITED

Flint Bridge

Tel.:

Fax:

Business Centre Ely Road Waterbeach Cambridge CB5 9QZ United Kingdom

PIPENET[™] - Leading the Way in Fluid Flow Analysis

PIPENET® Standard Module Report

Project: Closed loop cooling water system- 2

Calculated Results

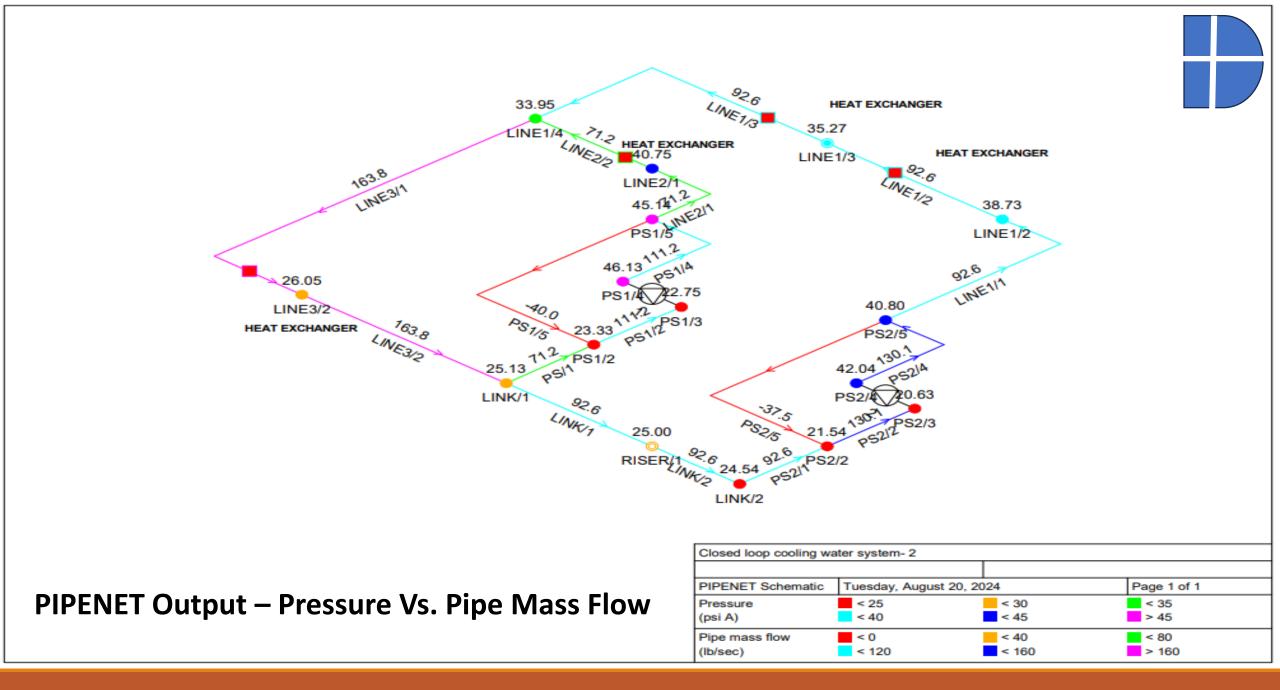
Fluid propertie	8				
Pipe	Input node	Output node	Temperature	Density	Viscosity
			("")	(15/11")	(dP)
PS/I	LINK/1	P51/2	1.99999	64.0636606	23.0201744
LINK/1	LINK/1	RISER/1	1.99999	64.0636606	23.0201744
LINK/2	RISERT	LINKS	1.99999	64.0636606	23.0201744
PS1/2	PSN2	PS1/3	1.99999	64.0636606	23.0201744
PS1/4	PS1/4	PS1/5	1.99999	64.0636606	23.0201744
PS1/S	PS1/2	PS1/5	1.99999	64.0636606	23.0201744
P52/1	LINK/2	P52/2	1.99999	64.0636606	23.0201744
P52/2	P52/2	P52/3	1.99999	64.0636606	23.0201744
P52/4	P52/4	P52/5	1.99999	64.0636606	23.0201744
P52/5	P52/2	PS2/5	1.99999	64.0636606	23.0201744
LINE1/1	P52/5	LINE1/2	1.99999	64.0636606	23.0201744
LINE1/2	LINE1/2	LINE1/3	19.99999	63.6292506	14.4378841
LINE1/3	LINE1/S	LINE1/4	39.99999	63.1285334	8.88157729
LINES/1	LINE1/4	LINE32	39.99999	63.1285334	8.88157729
LINE3/2	LINE3/2	LINKI	1.99999	64.0636606	23.0201744
LINE2/1	PSVS	LINE2/1	1.99999	64.0636606	23.0201744
LINE2/2	LINE2/1	LINE1/4	39.99999	63.1285334	8.88157729

Flow in	i pipes										
Label	Input node	Output reade	iniet pressur	Outlet pressur	Friction	Velocity	Flow	Density	Static head loss	Priction factor	Design- group
			(pail A)	(pat A)	Intestion units	(B/sec)	(Brisec)	(65/77*)	(pm))		
PS/I	LINKI	PS1/2	25.1285 948	23-3268 59	0.11521 1736	13.9263 954	71.2307	64.0636 606	•	6.84872 037E-0 3	Unset
LINKA	LINKI	Riseru 1	25.1285 948	25.0000 098	0.02572 10103	7.98347 278	92 5820 489	64.0636 606	•	7.00585 358E-0	Unset
LINK/2	RISER/ 1	LINK/2	25.0000 098	24.5409 972	0.02572 18183	7.98347 278	92.5820 489	64.0636 606	•	7.00585 358E-0 3	Unset
PS1/2	PS1/2	PSN3	23.3268 59	22.7491 918	0.25558 5569	21.7427 011	111.209 664	64.0636 606	-0.4448	6.23303 372E-0 3	Unset
PS1/4	PS1/4	PSVS	46.1275 672	45.1382 097	0.25558	21.7427 011	111.209 664	64.0636 606	0.22244 3276	6.23303 372E-0 3	Unset

PIPENET[®] - Leading the Way in Fluid Flow Analysis

SUNRISE SYSTEMS PIPENET VISION

PIPENET Output – Sample Page


E-mail: pipenet@sunrise-sys.com

+44 1223 441311

+44 1223 441297

Web: www.sunrise-sys.com

20-Aug-2024 Page 4 of 7

SUNRISE

SUNRISE SYSTEMS LIMITED

Flint Bridge Business Centre Ely Road Waterbeach Cambridge CB5 9QZ United Kingdom

Tel.: +44 1223 441311 Fax: +44 1223 441297

E-mail: pipenet@sunrise-sys.com

Web: www.sunrise-sys.com

SUNRISE SYSTEMS PIPENET VISION

Surge and Transient Force-Time Analysis of Tanker Loading System

The Network with Surge Relief Valve

SUNRISE SYSTEMS

PIPENET VISION

Project Objective

SUNRISE SYSTEMS

Waterbeach Cambridge **CB5 9QZ** United Kingdom

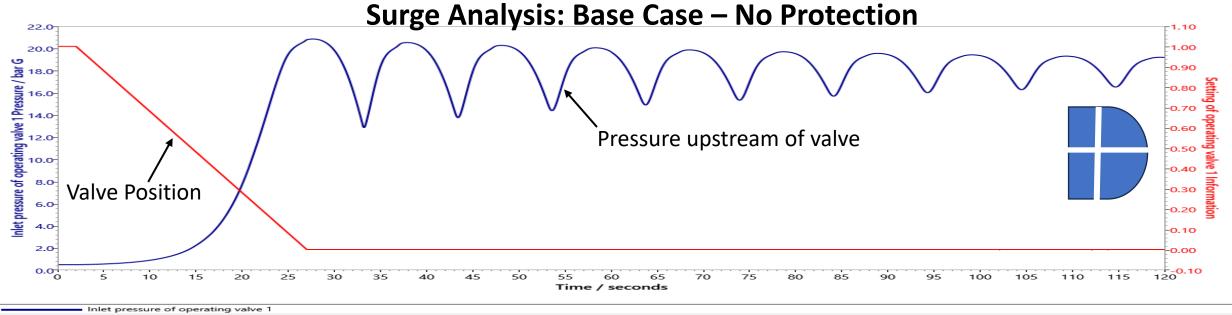
Tel.: +44 1223 441311 Fax: +44 1223 441297

E-mail: pipenet@sunrise-sys.com

Web: www.sunrise-sys.com

Surge and Transient **Force-Time Analysis** of Tanker Loading System

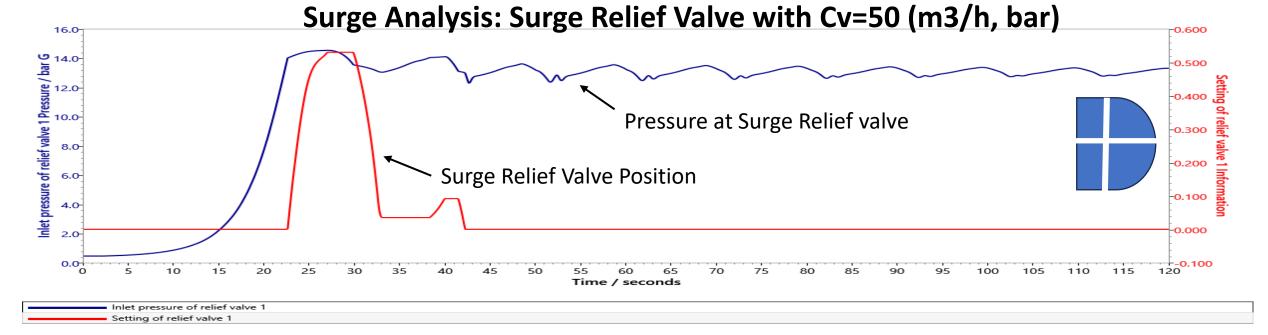
Application Advantage

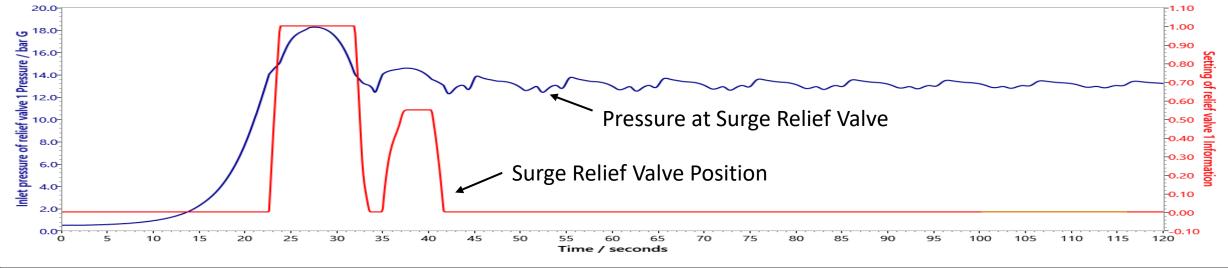

Salient

Features

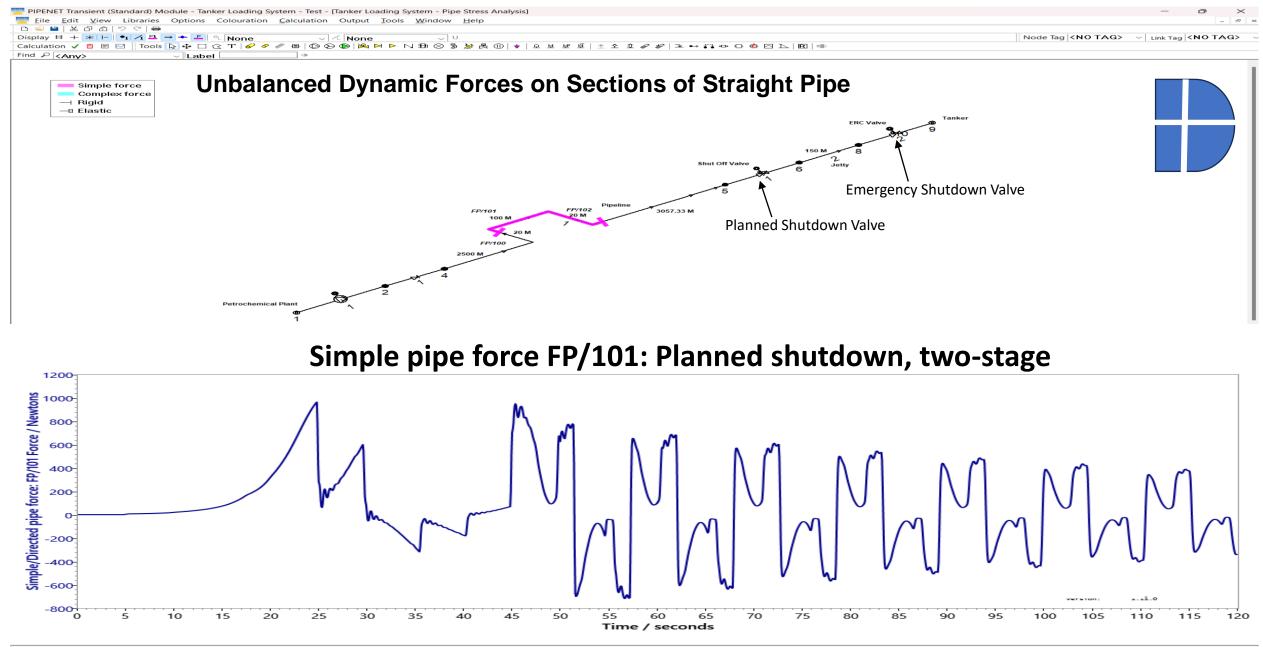
- Tanker Loading System A sample case study
- To establish whether the pressure surges experienced by the existing valves (due to valve closures) are below the allowable limit.
- To study hydraulic transient forces

- Any kind of pipeline in any kind of plant where frequent valve closure is part of the operation.
- This analysis can be used for Optimum design of Accumulator sizing, Surge Relief Valve and to calculate the force-time history in a form that can be read by pipe stress analysis programs

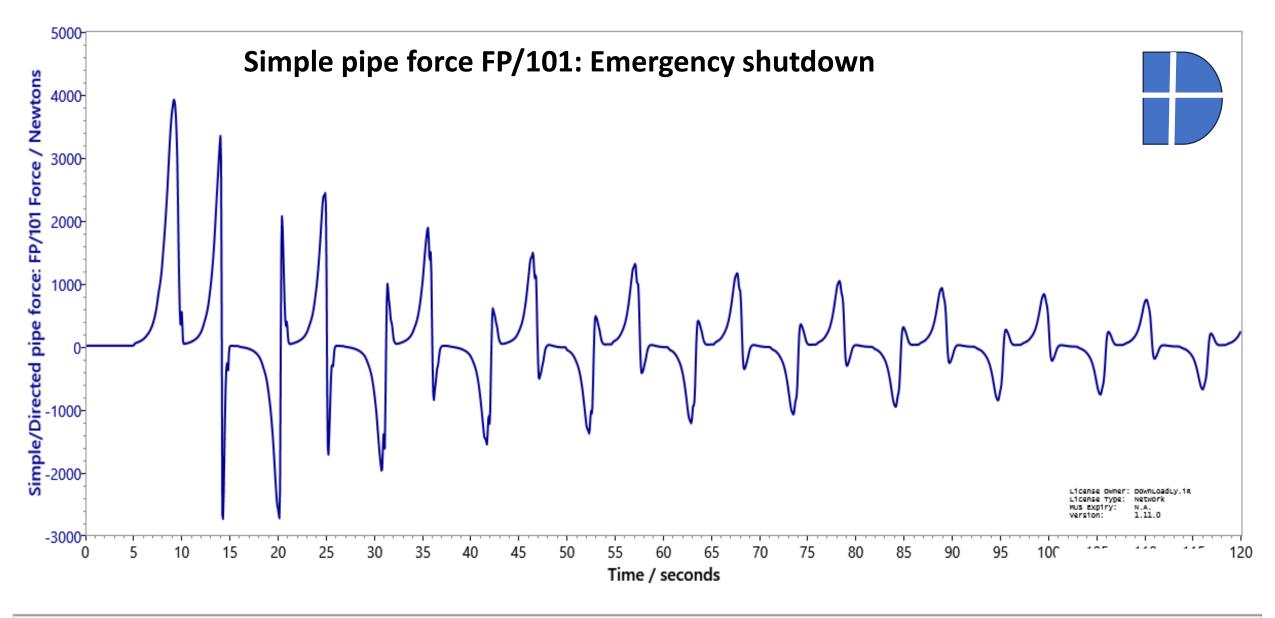

- Fluid- Lube Oil having density-867 Kg/M3, Viscosity- 33.8 cP, Bulk Modulus- 1.230025 GPa
- Case study will be for planned shutdown as well as emergency shutdown
- Simulation Time 120 Sec, Time step 0.068 Sec


Setting of operating value 1

Surge Analysis: Surge Relief Valve with Cv=200 (m3/h, bar) 16.0-0.160 -0.140 Inlet pressure of relief valve 1 Pressure / bar G 0.0 1 Pressure / bar G 0.0 2 0.0 1 Pressure / bar G 0.0 2 0.0 1 Pressure / bar G Setting of relief valve 0.120 Pressure at Surge Relief Valve -0.100-0.080 0.060 Information Surge Relief Valve Position -0.040 0.020 0.000 0.0+ 25 Ó 5 10 15 20 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110 115 120 Time / seconds


Setting of relief valve 1

Surge Analysis: Surge Relief Valve with Cv=10 (m3/h, bar)



Inlet pressure of relief valve 1 Setting of relief valve 1

Simple/Directed pipe force: FP/101

imple/Directed pipe lorce: FP/10

Simple/Directed pipe force: FP/101